

## PAP-003-001541 Seat No. \_\_\_\_\_

## B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Statistics: S - 501

(Compta. Techniques & Stat. Tool Box with Matlab) (Old Course)

> Faculty Code: 003 Subject Code: 001541

| Subject Code: 001541                                                             |
|----------------------------------------------------------------------------------|
| Fime : $2\frac{1}{2}$ Hours] [Total Marks : 70]                                  |
| Instructions: (1) All questions are compulsory.                                  |
| (2) Question - 1 carries 20 marks.                                               |
| (3) Question - 2 and Question - 3 carry 25 marks.                                |
| (4) Students can use their own scientific calculators.                           |
| Filling the blanks and short questions : (Each 1 mark) 20                        |
| (1) In Weddle's rule, $f(x)$ is a polynomial of                                  |
| (2) For interpolation or extrapolation, the two variables                        |
| should have relationship.                                                        |
| (3) Interpolation helps to estimate the value                                    |
| in series of data.                                                               |
| (4) The $(n+1)^{th}$ order finite difference of a $n^{th}$ order                 |
| polynomial is                                                                    |
| (5) Newton's formula for advancing differences utilizes                          |
| finite difference of each column of the                                          |
| difference table.                                                                |
| (6) Newton's -Gauss forward formula is also known as                             |
| polynomial formula.  (7) The independent variate values in the interpolation are |
| termed as                                                                        |
| (8) The relation between $u$ of Striling formula and $v$ of                      |
| Bessel's formula is                                                              |
| PAP-003-001541 ] 1 [Contd                                                        |

- (9) If the interpolating values lies near the beginning or the end of the central interval, \_\_\_\_\_ formula yields better results.
- (10) Lagrange's formula does not require the construction of \_\_\_\_\_ table.
- (11) Define Forward difference operator.
- (12) Define Mean or Average operator.
- (13) Define Interpolation.
- (14) Usual notations prove that  $(1 + \Delta)(1 \nabla) = 1$ .
- (15) Usual notations prove that  $E\nabla = \Delta$
- (16) Usual notations prove that  $\Delta^m \Delta^n = \Delta^{m+n}$
- (17) If  $x = [3 \ 7 \ 5; \ 0 \ 4 \ 2]$  then using MATLAB function sort  $(x, \ 1, \ 2)$  write is correct output?
- (18) If  $x = [3 \ 3 \ 5; \ 3 \ 6 \ 3]$  then using MATLAB function mode  $(x, \ 2)$  write is correct output ?
- (19) If  $x = [0 \ 1 \ 2; \ 3 \ 4 \ 5]$  then using MATLAB function sum  $(x, \ 1)$  write is correct output ?
- (20) If  $x = [1 \ 3 \ 9; \ 4 \ 6 \ 8]$  then using MATLAB function std  $(x, \ 0, \ 2)$  write is correct output?
- 2 (a) Write the answers any three: (Each 2 marks)
  - (1) Explain MATLAB function geomean.
  - (2) If  $y = 1 + x^2$ , then find f (1, 5, 7, 11) and prepare the divided difference table.
  - (3) Usual notation prove that

$$\mu \delta = \frac{1}{2} [\Delta + \nabla] = \frac{1}{2} [\Delta + \Delta E^{-1}]$$

- (4) Explain MATLAB function binopdf.
- (5) Prove that  $f(x) = \frac{\Delta^n f(x)}{h^n n!}$ .
- (6) Obtain Newton's formula for obtaining inverse.

6

- (b) Write the answers any three: (Each 3 marks)

9

10

- (1) Usual notation prove that  $\sqrt{1 + \mu^2 \delta^2} = 1 + \frac{\delta^2}{2}$ .
- (2) Obtain Lagrange's Interpolation formula.
- (3) Evaluate  $\int_0^{10} \frac{1}{1+x^2} dx$  by using Trapezoidal rule.
- (4) Explain Taylor's series method.
- (5) Apply Euler's Maclurin sum formula to find the sum  $1^3 + 2^3 + 3^3 + ... + n^3$ .
- (6) Explain MATLAB function prod and cumprod.
- (c) Write the answers any two: (Each 5 marks)
  - (1) Explain For-Loop and While-Loop structure of MATLAB with example.
  - (2) Obtain Gauss backward interpolation formula.
  - (3) Obtain Trapezoidal rule for numerical integration.
  - (4) Use Talyor's series method to compute y(0.1) and y(0.3) correct to five decimal places. If y(x) satisfies  $\frac{dy}{dx} = xy 2x$  with y(0) = 3.
  - (5) Obtain Bessel's formula for central difference interpolation.
- 3 (a) Write the answers any three: (Each 2 marks)
- 6
- (1) Evaluate  $\sqrt{37}$  using Newton's formula correct upto seven decimal.
- (2) Explain MATLAB function diff.
- (3) What are the assumptions on which the interpolation and extrapolation are based?
- (4) Find by the interaction method, the root near 3.8 of the equation  $2x \log_{10} x = 7$  correct upto four decimal.
- (5) Write Logical Operators of MATLAB?
- (6) Define Shift operator.

- (b) Write the answers any three: (Each 3 marks)
- 9

- (1) Explain Newton Raphson method.
- (2) Explain MATLAB function mean and median.
- (3) Obtain Simpson's  $\frac{1}{3}$  rule for numerical integration.
- (4) Apply Euler's Maclurin sum formula to find the sums  $\frac{1}{11^3} + \frac{1}{12^3} + ... + \frac{1}{50^3}$  correct to 5 significant figures.
- (5) Explain False position method.
- (6) Obtain Gregory-Newton's Forward Interpolation formula.
- (c) Write the answers any two: (Each 5 marks) 10
  - (1) Explain number display format of MATLAB.
  - (2) Explain If-Else-End structure of MATLAB with example.
  - (3) Given the differential equation  $\frac{dy}{dx} = x y$ , with the initial condition y = 1, when x = 0, use Picard's method to obtain y for x = 0.2 correct to five decimal places.
  - (4) Obtain Gauss forward interpolation formula.
  - (5) Obtain Stirling formula for central difference interpolation.